Abstract
We have performed molecular dynamics (MD) simulations to investigate the effect of Si-C bond formation on fluence-dependent results in 20 keV C 60 bombardment of Si. Sputter depth profiling experiments of C 60 on Si have produced atypical results, which are thought to be caused by the strong covalent bonds that are formed between the C atoms in the projectile and Si atoms in the substrate. A recently developed scheme developed by Russo, et al.8 has been adapted to perform MD simulations of 150 successive impacts of 20 keV C60 on Si, which corresponds to a total fluence of 2.64 × 1013 impacts/cm2. In order to isolate the effects of Si-C bond formation, the same set of trajectories is calculated with and without the attractive Si-C potential energy terms. When Si-C bonds are able to form, nearly all the C atoms from the projectile are incorporated into the substrate. When the possibility of Si-C bond formation is removed, most of the C atoms are backscattered into the vacuum. The cumulative result is that the substrate with Si-C bonds contains a factor of twenty times more C atoms, which are located below the surface.
Original language | English (US) |
---|---|
Pages (from-to) | 123-125 |
Number of pages | 3 |
Journal | Surface and Interface Analysis |
Volume | 43 |
Issue number | 1-2 |
DOIs | |
State | Published - Jan 2011 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Condensed Matter Physics
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Materials Chemistry