TY - JOUR
T1 - Effect of zeolite confinement on the conversion of 1-butanol to butene isomers
T2 - Mechanistic insights from DFT based microkinetic modelling
AU - John, Mathew
AU - Alexopoulos, Konstantinos
AU - Reyniers, Marie Françoise
AU - Marin, Guy B.
N1 - Funding Information:
This work was supported by the Long Term Structural Methusalem Funding by the Flemish Government (grant number BOF09/01M00409). This work was carried out using the STEVIN Supercomputer Infrastructure at Ghent University, funded by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government - department EWI.
Publisher Copyright:
© The Royal Society of Chemistry 2017.
PY - 2017
Y1 - 2017
N2 - Ab initio based microkinetic modelling of 1-butanol dehydration to butene isomers is used to obtain mechanistic insights into the effect of a zeolite framework. A detailed microkinetic model including double bond isomerization, skeletal isomerization and mechanisms for the direct formation of 2t-butene from 1-butanol dimer and di-1-butyl ether (DBE) is considered for the dehydration in H-ZSM-5, H-ZSM-22 and H-FER. H-FER favors the production of 2t-butene and H-ZSM-22 achieves thermodynamic equilibrium composition for linear butenes even at low conversion levels, while H-ZSM-5 maximizes 1-butene selectivity. Significant differences are observed in the reaction mechanism leading to formation of 2t-butene. For H-ZSM-5 and H-ZSM-22, the formation of 2-butenes occurs via double bond isomerization of 1-butene produced from butanol dehydration. For the double bond isomerization of 1-butene to 2t-butene, both concerted and 2-butoxide mediated stepwise mechanisms contribute significantly in H-ZSM-5, while only the concerted mechanism is operative in H-ZSM-22. On the other hand, for H-FER, 2t-butene is mainly produced from the butanol dimer via an E1 elimination accompanied by a 1,2-hydride shift. This in turn can be attributed to an increase in enthalpic stabilization of the E1 elimination transition state for the direct formation of 2t-butene from 1-butanol dimer when moving from H-ZSM-5 to H-FER. Isobutene formation is not observed in all three zeolites at the investigated temperature range of 450-500 K.
AB - Ab initio based microkinetic modelling of 1-butanol dehydration to butene isomers is used to obtain mechanistic insights into the effect of a zeolite framework. A detailed microkinetic model including double bond isomerization, skeletal isomerization and mechanisms for the direct formation of 2t-butene from 1-butanol dimer and di-1-butyl ether (DBE) is considered for the dehydration in H-ZSM-5, H-ZSM-22 and H-FER. H-FER favors the production of 2t-butene and H-ZSM-22 achieves thermodynamic equilibrium composition for linear butenes even at low conversion levels, while H-ZSM-5 maximizes 1-butene selectivity. Significant differences are observed in the reaction mechanism leading to formation of 2t-butene. For H-ZSM-5 and H-ZSM-22, the formation of 2-butenes occurs via double bond isomerization of 1-butene produced from butanol dehydration. For the double bond isomerization of 1-butene to 2t-butene, both concerted and 2-butoxide mediated stepwise mechanisms contribute significantly in H-ZSM-5, while only the concerted mechanism is operative in H-ZSM-22. On the other hand, for H-FER, 2t-butene is mainly produced from the butanol dimer via an E1 elimination accompanied by a 1,2-hydride shift. This in turn can be attributed to an increase in enthalpic stabilization of the E1 elimination transition state for the direct formation of 2t-butene from 1-butanol dimer when moving from H-ZSM-5 to H-FER. Isobutene formation is not observed in all three zeolites at the investigated temperature range of 450-500 K.
UR - http://www.scopus.com/inward/record.url?scp=85025834630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025834630&partnerID=8YFLogxK
U2 - 10.1039/c7cy00536a
DO - 10.1039/c7cy00536a
M3 - Article
AN - SCOPUS:85025834630
SN - 2044-4753
VL - 7
SP - 2978
EP - 2997
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 14
ER -