Abstract
In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me∗ and mh∗ in bilayer graphene in the low carrier density regime on the order of 1×1011cm-2. Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me∗ follows a tight-binding description in the whole density range, mh∗ starts to drop rapidly below the tight-binding description at a carrier density of n=6×1011cm-2 and exhibits a strong suppression of 30% when n reaches 2×1011cm-2. Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.
Original language | English (US) |
---|---|
Article number | 161406 |
Journal | Physical Review B |
Volume | 94 |
Issue number | 16 |
DOIs | |
State | Published - Oct 25 2016 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics