TY - JOUR
T1 - Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows
AU - Melgar, A.
AU - Harper, M. T.
AU - Oh, J.
AU - Giallongo, F.
AU - Young, M. E.
AU - Ott, T. L.
AU - Duval, S.
AU - Hristov, A. N.
N1 - Publisher Copyright:
© 2020 American Dairy Science Association
PY - 2020/1
Y1 - 2020/1
N2 - This study examined the effect of 3-nitrooxypropanol (3-NOP), a substance under investigation, on enteric methane (CH4) emission, rumen fermentation, lactational performance, sensory properties of milk, and the resumption of ovarian cyclicity in early-lactation dairy cows. Fifty-six multi- and primiparous Holstein cows, including 8 that were rumen cannulated, were used in a 15-wk randomized complete block design experiment. Cows were blocked based on parity and previous lactation milk yield (MY) or predicted MY, and within each block were randomly assigned to one of 2 treatments: (1) control (CON), administered no 3-NOP, or (2) 3-NOP applied at 60 mg/kg of feed dry matter (3-NOP). Enteric CH4 emission was measured during experimental wk 2, 6, 9, and 15, using the GreenFeed system. Dry matter intake (DMI) and MY data were collected daily throughout the experiment, and milk composition samples were collected 7 times during the experiment. Milk samples were collected from 14 to 60 (±2) d after calving, 3 d per week, and assayed for progesterone concentration to determine resumption of ovarian activity. Compared with CON, 3-NOP decreased daily CH4 emission by 26%, CH4 yield (CH4 per kg of DMI) by 21%, and CH4 emission intensity [CH4 per kg of MY or energy-corrected milk (ECM)] by 25%. Enteric emission of carbon dioxide was decreased by 5%, and hydrogen emission was increased 48-fold by 3-NOP. Inclusion of 3-NOP decreased concentration of total volatile fatty acids (by 9.3%) and acetate but increased butyrate molar proportion, ethanol, and formate concentrations in ruminal fluid. Dry matter intake was lower for 3-NOP compared with CON, but DMI expressed as a percentage of body weight was not different between treatments. Treatment had no effect on milk and ECM, body weight change, or body condition score. Milk composition and milk fat and protein yields were not affected by treatment, except that concentrations of short-chain fatty acids in milk were increased by 3-NOP. Nutrient digestibility and blood metabolites and hormones were not affected by 3-NOP, except that insulin was decreased by 3-NOP. There was no effect of 3-NOP on postpartum resumption of ovarian activity, including days to first and second luteal phases, length of first and second luteal phases, and interval from first to second luteal phase. Sensory properties of milk from cows fed 3-NOP and cheese made from that milk were not affected by treatment. In this experiment, 3-NOP decreased daily enteric CH4 emission, emission yield, and emission intensity, improved feed efficiency, and did not affect lactational performance or onset of ovarian activity in early-lactation dairy cows.
AB - This study examined the effect of 3-nitrooxypropanol (3-NOP), a substance under investigation, on enteric methane (CH4) emission, rumen fermentation, lactational performance, sensory properties of milk, and the resumption of ovarian cyclicity in early-lactation dairy cows. Fifty-six multi- and primiparous Holstein cows, including 8 that were rumen cannulated, were used in a 15-wk randomized complete block design experiment. Cows were blocked based on parity and previous lactation milk yield (MY) or predicted MY, and within each block were randomly assigned to one of 2 treatments: (1) control (CON), administered no 3-NOP, or (2) 3-NOP applied at 60 mg/kg of feed dry matter (3-NOP). Enteric CH4 emission was measured during experimental wk 2, 6, 9, and 15, using the GreenFeed system. Dry matter intake (DMI) and MY data were collected daily throughout the experiment, and milk composition samples were collected 7 times during the experiment. Milk samples were collected from 14 to 60 (±2) d after calving, 3 d per week, and assayed for progesterone concentration to determine resumption of ovarian activity. Compared with CON, 3-NOP decreased daily CH4 emission by 26%, CH4 yield (CH4 per kg of DMI) by 21%, and CH4 emission intensity [CH4 per kg of MY or energy-corrected milk (ECM)] by 25%. Enteric emission of carbon dioxide was decreased by 5%, and hydrogen emission was increased 48-fold by 3-NOP. Inclusion of 3-NOP decreased concentration of total volatile fatty acids (by 9.3%) and acetate but increased butyrate molar proportion, ethanol, and formate concentrations in ruminal fluid. Dry matter intake was lower for 3-NOP compared with CON, but DMI expressed as a percentage of body weight was not different between treatments. Treatment had no effect on milk and ECM, body weight change, or body condition score. Milk composition and milk fat and protein yields were not affected by treatment, except that concentrations of short-chain fatty acids in milk were increased by 3-NOP. Nutrient digestibility and blood metabolites and hormones were not affected by 3-NOP, except that insulin was decreased by 3-NOP. There was no effect of 3-NOP on postpartum resumption of ovarian activity, including days to first and second luteal phases, length of first and second luteal phases, and interval from first to second luteal phase. Sensory properties of milk from cows fed 3-NOP and cheese made from that milk were not affected by treatment. In this experiment, 3-NOP decreased daily enteric CH4 emission, emission yield, and emission intensity, improved feed efficiency, and did not affect lactational performance or onset of ovarian activity in early-lactation dairy cows.
UR - http://www.scopus.com/inward/record.url?scp=85075451418&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075451418&partnerID=8YFLogxK
U2 - 10.3168/jds.2019-17085
DO - 10.3168/jds.2019-17085
M3 - Article
C2 - 31733848
AN - SCOPUS:85075451418
SN - 0022-0302
VL - 103
SP - 410
EP - 432
JO - Journal of dairy science
JF - Journal of dairy science
IS - 1
ER -