Abstract
Wolbachia endosymbionts cause postmating reproductive isolation between the sibling species Nasonia vitripennis and N. giraulti. Most Nasonia are doubly infected with a representative from each of the two major Wolbachia groups (A and B). This study investigates the role of single (A or B) and double (A and B) Wolbachia infections in interspecies cytoplasmic incompatibility (CI) and host genomic influences on the incompatibility phenotype. Results show that the single A Wolbachia harbored in N. vitripennis (wAv) is bidirectionally incompatible with the single A Wolbachia harbored in N. giraulti (wAg). Results also indirectly show that the N. vitripennis wBv is bidirectionally incompatible with the N. giraulti wBg. The findings support current phylogenetic evidence that suggests these single infections have independent origins and were acquired via horizontal transfer. The wAv Wolbachia expresses partial CI in the N. vitripennis nuclear background. However, following genomic replacement by introgression, wAv expresses complete CI in the N. giraulti background and remains bidirectionally incompatible with wAg. Results show that double infections can reinforce interspecies reproductive isolation through the addition of incompatibility types and indicate that the host genome can influence incompatibility levels. This study has implications for host-symbiont coevolution and the role of Wolbachia in speciation.
Original language | English (US) |
---|---|
Pages (from-to) | 1833-1844 |
Number of pages | 12 |
Journal | Genetics |
Volume | 148 |
Issue number | 4 |
State | Published - Apr 1998 |
All Science Journal Classification (ASJC) codes
- Genetics