Effects of ball milling on the structure of cotton cellulose

Zhe Ling, Tuo Wang, Mohamadamin Makarem, Michael Santiago Cintrón, H. N. Cheng, Xue Kang, Markus Bacher, Antje Potthast, Thomas Rosenau, Holly King, Christopher D. Delhom, Sunghyun Nam, J. Vincent Edwards, Seong H. Kim, Feng Xu, Alfred D. French

Research output: Contribution to journalArticlepeer-review

285 Scopus citations


Cellulose is often described as a mixture of crystalline and amorphous material. A large part of the general understanding of the chemical, biochemical and physical properties of cellulosic materials is thought to depend on the consequences of the ratio of these components. For example, amorphous materials are said to be more reactive and have less tensile strength but comprehensive understanding and definitive analysis remain elusive. Ball milling has been used for decades to increase the ratio of amorphous material. The present work used 13 techniques to follow the changes in cotton fibers (nearly pure cellulose) after ball milling for 15, 45 and 120 min. X-ray diffraction results were analyzed with the Rietveld method; DNP (dynamic nuclear polarization) natural abundance 2D NMR studies in the next paper in this issue assisted with the interpretation of the 1D analyses in the present work. A conventional NMR model’s paracrystalline and inaccessible crystallite surfaces were not needed in the model used for the DNP studies. Sum frequency generation (SFG) spectroscopy also showed profound changes as the cellulose was decrystallized. Optical microscopy and field emission-scanning electron microscopy results showed the changes in particle size; molecular weight and carbonyl group analyses by gel permeation chromatography confirmed chemical changes. Specific surface areas and pore sizes increased. Fourier transform infrared (FTIR) and Raman spectroscopy also indicated progressive changes; some proposed indicators of crystallinity for FTIR were not in good agreement with our results. Thermogravimetric analysis results indicated progressive increase in initial moisture content and some loss in stability. Although understanding of structural changes as cellulose is amorphized by ball milling is increased by this work, continued effort is needed to improve agreement between the synchrotron and laboratory X-ray methods used herein and to provide physical interpretation of the SFG results.

Original languageEnglish (US)
Pages (from-to)305-328
Number of pages24
Issue number1
StatePublished - Jan 15 2019

All Science Journal Classification (ASJC) codes

  • Polymers and Plastics


Dive into the research topics of 'Effects of ball milling on the structure of cotton cellulose'. Together they form a unique fingerprint.

Cite this