TY - JOUR
T1 - Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals
AU - O'Loughlin, Edward J.
AU - Boyanov, Maxim I.
AU - Flynn, Theodore M.
AU - Gorski, Christopher A.
AU - Hofmann, Scott M.
AU - McCormick, Michael L.
AU - Scherer, Michelle M.
AU - Kemner, Kenneth M.
PY - 2013/8/20
Y1 - 2013/8/20
N2 - Natural FeIII oxides typically contain a range of trace elements including P. Although solution phase and adsorbed P (as phosphate) have been shown to impact the bioreduction of FeIII oxides and the formation of "biogenic" secondary minerals, little is known about the potential effects of occluded/incorporated phosphate. We have examined the bioreduction of FeIII oxides (lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3)) containing 0-3 mass% P as "bound" (a term we use to include both adsorbed and occluded/incorporated) phosphate. Kinetic dissolution studies showed congruent release of Fe and P, suggesting that the phosphate in these materials was incorporated within the particles; however, 53% or 86% of the total phosphate associated with the lepidocrocites containing 0.7 or 3 mass% P, respectively, was extracted with 0.1 M NaOH and can be considered to be adsorbed, both to exterior surfaces and within micropores. In the absence of phosphate, lepidocrocite was rapidly reduced to magnetite by Shewanella putrefaciens CN32, and over time the magnetite was partially transformed to ferrous hydroxy carbonate (FHC). The presence of 0.2-0.7 mass% P significantly inhibited the initial reduction of lepidocrocite but ultimately resulted in greater Fe II production and the formation of carbonate green rust. The bioreduction of maghemite with and without bound phosphate resulted in solid-state conversion to magnetite, with subsequent formation of FHC. We also examined the potential redox cycling of green rust under alternating Fe III-reducing and oxic conditions. Oxidation of biogenic green rust by O2 resulted in conversion to ferric green rust, which was readily reduced back to green rust by S. putrefaciens CN32. These results indicate the potential for cycling of green rust between reduced and oxidized forms under redox dynamics similar to those encountered in environments that alternate between iron-reducing and oxic conditions, and they are consistent with the identification of green rust in soils/sediments with seasonal redox cycling.
AB - Natural FeIII oxides typically contain a range of trace elements including P. Although solution phase and adsorbed P (as phosphate) have been shown to impact the bioreduction of FeIII oxides and the formation of "biogenic" secondary minerals, little is known about the potential effects of occluded/incorporated phosphate. We have examined the bioreduction of FeIII oxides (lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3)) containing 0-3 mass% P as "bound" (a term we use to include both adsorbed and occluded/incorporated) phosphate. Kinetic dissolution studies showed congruent release of Fe and P, suggesting that the phosphate in these materials was incorporated within the particles; however, 53% or 86% of the total phosphate associated with the lepidocrocites containing 0.7 or 3 mass% P, respectively, was extracted with 0.1 M NaOH and can be considered to be adsorbed, both to exterior surfaces and within micropores. In the absence of phosphate, lepidocrocite was rapidly reduced to magnetite by Shewanella putrefaciens CN32, and over time the magnetite was partially transformed to ferrous hydroxy carbonate (FHC). The presence of 0.2-0.7 mass% P significantly inhibited the initial reduction of lepidocrocite but ultimately resulted in greater Fe II production and the formation of carbonate green rust. The bioreduction of maghemite with and without bound phosphate resulted in solid-state conversion to magnetite, with subsequent formation of FHC. We also examined the potential redox cycling of green rust under alternating Fe III-reducing and oxic conditions. Oxidation of biogenic green rust by O2 resulted in conversion to ferric green rust, which was readily reduced back to green rust by S. putrefaciens CN32. These results indicate the potential for cycling of green rust between reduced and oxidized forms under redox dynamics similar to those encountered in environments that alternate between iron-reducing and oxic conditions, and they are consistent with the identification of green rust in soils/sediments with seasonal redox cycling.
UR - http://www.scopus.com/inward/record.url?scp=84882638480&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84882638480&partnerID=8YFLogxK
U2 - 10.1021/es400627j
DO - 10.1021/es400627j
M3 - Article
C2 - 23909690
AN - SCOPUS:84882638480
SN - 0013-936X
VL - 47
SP - 9157
EP - 9166
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 16
ER -