TY - JOUR
T1 - Effects of exercise intensity and duration on norepinephrine spillover and clearance in humans
AU - Leuenberger, U.
AU - Sinoway, L.
AU - Gubin, S.
AU - Gaul, L.
AU - Davis, D.
AU - Zelis, R.
PY - 1993
Y1 - 1993
N2 - During dynamic exercise, blood flow to exercising muscle is closely matched to metabolic demands. This is made possible by metabolic vasodilation, vasoconstriction in inactive vascular beds, and a rise in cardiac output. The sympathetic nervous system plays an important role in regulating this exercise response. In this study, we used steady-state infusions of tritiated norepinephrine ([3H]NE) to determine the magnitude and time course of the arterial NE spillover response to sustained upright bicycle exercise at low (n = 11) and moderate-to-high (n = 14) exercise intensity (25 and 65% of maximum work load, respectively) in normal young subjects. In addition, we sought to examine whether exercise was associated with a change in NE clearance. During 30 min of low-level exercise, arterial NE spillover increased from 1.45 ± 0.13 to 3.14 ± 0.30 nmol · min-1 · m-2 (P < 0.01) and appeared to plateau at 20-30 min of exercise; NE clearance remained unchanged. During 20 min of moderate-to-high-intensity exercise, we found a substantial and progressive rise of arterial NE spillover from 2.15 ± 0.27 to 13.52 ± 1.62 nmol · min-1 · m-2 (P < 0.01). NE clearance decreased from 0.91 ± 0.05 to 0.80 ± 0.05 l · min-1 · m-2 (P < 0.05). These data suggest that, during dynamic exercise, sympathetic nervous system activity is related to exercise intensity, and there appears to be an interaction between the effects of exercise intensity and duration on NE spillover. In addition, at moderate-to-high exercise intensity, a small decrease of NE clearance contributes to the rise in plasma NE.
AB - During dynamic exercise, blood flow to exercising muscle is closely matched to metabolic demands. This is made possible by metabolic vasodilation, vasoconstriction in inactive vascular beds, and a rise in cardiac output. The sympathetic nervous system plays an important role in regulating this exercise response. In this study, we used steady-state infusions of tritiated norepinephrine ([3H]NE) to determine the magnitude and time course of the arterial NE spillover response to sustained upright bicycle exercise at low (n = 11) and moderate-to-high (n = 14) exercise intensity (25 and 65% of maximum work load, respectively) in normal young subjects. In addition, we sought to examine whether exercise was associated with a change in NE clearance. During 30 min of low-level exercise, arterial NE spillover increased from 1.45 ± 0.13 to 3.14 ± 0.30 nmol · min-1 · m-2 (P < 0.01) and appeared to plateau at 20-30 min of exercise; NE clearance remained unchanged. During 20 min of moderate-to-high-intensity exercise, we found a substantial and progressive rise of arterial NE spillover from 2.15 ± 0.27 to 13.52 ± 1.62 nmol · min-1 · m-2 (P < 0.01). NE clearance decreased from 0.91 ± 0.05 to 0.80 ± 0.05 l · min-1 · m-2 (P < 0.05). These data suggest that, during dynamic exercise, sympathetic nervous system activity is related to exercise intensity, and there appears to be an interaction between the effects of exercise intensity and duration on NE spillover. In addition, at moderate-to-high exercise intensity, a small decrease of NE clearance contributes to the rise in plasma NE.
UR - http://www.scopus.com/inward/record.url?scp=0027228260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027228260&partnerID=8YFLogxK
U2 - 10.1152/jappl.1993.75.2.668
DO - 10.1152/jappl.1993.75.2.668
M3 - Article
C2 - 8226467
AN - SCOPUS:0027228260
SN - 8750-7587
VL - 75
SP - 668
EP - 674
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 2
ER -