TY - GEN
T1 - Effects of fuel molecular weight on emissions in a jet flame and a model gas turbine combustor
AU - Makwana, Anandkumar
AU - Iyer, Suresh
AU - Linevsky, Milton
AU - Santoro, Robert
AU - Litzinger, Thomas
AU - O'Connor, Jacqueline
N1 - Funding Information:
This work was supported by the Strategic Environmental Research and Development Program (WP-2145) under the direction of Dr. Robin Nissan and Mr. Bruce Sartwell. We are grateful to Dr. Tim Edwards, Dr. Scott Stouffer and Dr. Mel Roquemore for providing fuels used in the study. The authors would also like to acknowledge Dr. Venkatesh Iyer for his help with the experiment.
Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The objective of this study is to understand the effects of fuel volatility on soot emissions. The effect of fuel volatility on soot is investigated in two experimental configurations: a jet flame and a model gas turbine combustor. The jet flame experiment provides information about the effects of fuel on the spatial development of aromatics and soot in an axisymmetric, co-flow, laminar flame at atmospheric pressure. The data from the model gas turbine combustor illustrate the effect of fuel volatility on net soot production under conditions similar to an actual engine at cruise, operated at 5 atm, an inlet temperature of 560 K, and an inlet global equivalence ratio of 0.9 to 1.8. Two fuels with different boiling points are investigated: n-heptane/ndodecane mixture and n-hexadecane/n-dodecane mixture. The nhexadecane has a boiling point of 287° C as compared to 216° C for n-dodecane and 98° C for n-heptane. The jet flames investigated are non-premixed and premixed flames (jet equivalence ratios of 24 and 6) in order to have fuel rich conditions similar to those in the primary zone of an aircraft engine combustor. The results from the jet flames indicate that the peak soot volume fraction produced in the n-hexadecane fuel is slightly higher as compared to the n-heptane fuel for both nonpremixed and premixed flames. The comparison of aromatics and soot volume fraction in non-premixed and premixed flames shows significant differences in the spatial development of aromatics and soot along the downstream direction. The results from the model combustor indicate that, within experiment uncertainty, the net soot production is similar in both n-heptane and n-hexadecane fuel mixtures. In comparing the results from these two burner configurations, we draw conclusions about important processes for soot formation in gas turbine combustors and what can be learned from laboratory-scale flames.
AB - The objective of this study is to understand the effects of fuel volatility on soot emissions. The effect of fuel volatility on soot is investigated in two experimental configurations: a jet flame and a model gas turbine combustor. The jet flame experiment provides information about the effects of fuel on the spatial development of aromatics and soot in an axisymmetric, co-flow, laminar flame at atmospheric pressure. The data from the model gas turbine combustor illustrate the effect of fuel volatility on net soot production under conditions similar to an actual engine at cruise, operated at 5 atm, an inlet temperature of 560 K, and an inlet global equivalence ratio of 0.9 to 1.8. Two fuels with different boiling points are investigated: n-heptane/ndodecane mixture and n-hexadecane/n-dodecane mixture. The nhexadecane has a boiling point of 287° C as compared to 216° C for n-dodecane and 98° C for n-heptane. The jet flames investigated are non-premixed and premixed flames (jet equivalence ratios of 24 and 6) in order to have fuel rich conditions similar to those in the primary zone of an aircraft engine combustor. The results from the jet flames indicate that the peak soot volume fraction produced in the n-hexadecane fuel is slightly higher as compared to the n-heptane fuel for both nonpremixed and premixed flames. The comparison of aromatics and soot volume fraction in non-premixed and premixed flames shows significant differences in the spatial development of aromatics and soot along the downstream direction. The results from the model combustor indicate that, within experiment uncertainty, the net soot production is similar in both n-heptane and n-hexadecane fuel mixtures. In comparing the results from these two burner configurations, we draw conclusions about important processes for soot formation in gas turbine combustors and what can be learned from laboratory-scale flames.
UR - http://www.scopus.com/inward/record.url?scp=85029318075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029318075&partnerID=8YFLogxK
U2 - 10.1115/GT201763686
DO - 10.1115/GT201763686
M3 - Conference contribution
AN - SCOPUS:85029318075
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
Y2 - 26 June 2017 through 30 June 2017
ER -