Effects of nitric oxide in cultured prevertebral sympathetic ganglion neurons

K. N. Browning, Z. L. Zheng, D. L. Kreulen, R. A. Travagli

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


The effects of the nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), were tested on cultured dissociated guinea pig celiac ganglion neurons using whole cell patch-clamp recordings. S- nitrosoacetylpenicillamine induced a concentration and voltage-dependent inwardly directed shift in holding current (inward current shift) in 89% of neurons. The inward current shift was prevented by pre-treatment with the nitric oxide scavenger reduced hemoglobin and was abolished by intra- or extracellular cesium. The amplitude of the inward current shift was also sensitive to the extracellular potassium concentration. The S- nitrosoacetylpenicillamine-induced inward current shift was mediated by a decrease in calcium-dependent potassium currents (I(AHPs); apamin (100 nM), charybdotoxin (10 nM) or tetraethylammonium (5 mM) reduced but did not abolish the amplitude of its inward current shift and a combination of apamin and tetraethylammonium abolished the S-nitrosoacetylpenicillamine-induced inward current response. In the presence of extracellular cobalt, SNAP produced an outward current that was concentration- and voltage-dependent, abolished by reduced hemoglobin and extracellular cesium and reduced by 4-AP (1 mM); in the absence of cobalt, 4-AP increased the SNAP-induced inward current shift. These data indicate that NO exerts dual opposing effects on neuronal potassium conductances, namely an inward current shift mediated through an inhibition of I(AHP) and induction of an outward current mediated by activation of the potassium delayed rectifier.

Original languageEnglish (US)
Pages (from-to)1086-1093
Number of pages8
JournalJournal of Pharmacology and Experimental Therapeutics
Issue number2
StatePublished - 1998

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology


Dive into the research topics of 'Effects of nitric oxide in cultured prevertebral sympathetic ganglion neurons'. Together they form a unique fingerprint.

Cite this