TY - JOUR
T1 - Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol
AU - Lin, Fawei
AU - Jiang, Xiao
AU - Boreriboon, Nuttakorn
AU - Wang, Zhihua
AU - Song, Chunshan
AU - Cen, Kefa
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/9/5
Y1 - 2019/9/5
N2 - Lab-synthesized and commercial materials, TiO2, ZrO2, CeO2, Al2O3 and SiO2, were employed to investigate the effects of support on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. SiO2 was used as a benchmark with negligible MSI (metal-support interaction) and adsorption capacity. TiO2 P25 (TiO2-P1) with coexistence of anatase/rutile phase exhibited the optimal supports among TiO2 serial supports. TiO2-P1, ZrO2, and Al2O3 exhibited significant promotional effects than SiO2 support, and the methanol synthesis activity decreased as: TiO2-P1˜ZrO2>Al2O3>CeO2-D˜SiO2. Pd-Cu/TiO2-P1 and Pd-Cu/ZrO2 yielded 1.6-time more CH3OH than Pd-Cu/SiO2. Detailed characterizations demonstrated that methanol formation was mainly correlated to PdCu3 alloy and H2/CO2 adsorption. Pd-Cu/CeO2-D possessed the strongest MSI, but with alloy restructuring to form PdCux, lowered weakly adsorbed ratio of CO2 and surface adsorption ratio of H2/CO2, therefore exhibiting worse catalytic performance. Pd-Cu/TiO2-P1, Pd-Cu/ZrO2, and Pd-Cu/Al2O3 possessed moderate MSI and desirable performance.
AB - Lab-synthesized and commercial materials, TiO2, ZrO2, CeO2, Al2O3 and SiO2, were employed to investigate the effects of support on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. SiO2 was used as a benchmark with negligible MSI (metal-support interaction) and adsorption capacity. TiO2 P25 (TiO2-P1) with coexistence of anatase/rutile phase exhibited the optimal supports among TiO2 serial supports. TiO2-P1, ZrO2, and Al2O3 exhibited significant promotional effects than SiO2 support, and the methanol synthesis activity decreased as: TiO2-P1˜ZrO2>Al2O3>CeO2-D˜SiO2. Pd-Cu/TiO2-P1 and Pd-Cu/ZrO2 yielded 1.6-time more CH3OH than Pd-Cu/SiO2. Detailed characterizations demonstrated that methanol formation was mainly correlated to PdCu3 alloy and H2/CO2 adsorption. Pd-Cu/CeO2-D possessed the strongest MSI, but with alloy restructuring to form PdCux, lowered weakly adsorbed ratio of CO2 and surface adsorption ratio of H2/CO2, therefore exhibiting worse catalytic performance. Pd-Cu/TiO2-P1, Pd-Cu/ZrO2, and Pd-Cu/Al2O3 possessed moderate MSI and desirable performance.
UR - http://www.scopus.com/inward/record.url?scp=85070858008&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070858008&partnerID=8YFLogxK
U2 - 10.1016/j.apcata.2019.117210
DO - 10.1016/j.apcata.2019.117210
M3 - Article
AN - SCOPUS:85070858008
SN - 0926-860X
VL - 585
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
M1 - 117210
ER -