Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling

N. Sundaram, K. A. Thole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations


With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film-cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film-cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film-cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Turbo Expo 2006 - Power for Land, Sea, and Air
Number of pages12
StatePublished - 2006
Event2006 ASME 51st Turbo Expo - Barcelona, Spain
Duration: May 6 2006May 11 2006

Publication series

NameProceedings of the ASME Turbo Expo
Volume3 PART A


Other2006 ASME 51st Turbo Expo

All Science Journal Classification (ASJC) codes

  • General Engineering


Dive into the research topics of 'Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling'. Together they form a unique fingerprint.

Cite this