TY - JOUR
T1 - Effects of thioridazine and its metabolites on dopaminergic function
T2 - Drug metabolism as a determinant of the antidopaminergic actions of thioridazine
AU - Kilts, C. D.
AU - Knight, D. L.
AU - Mailman, Richard
AU - Widerlöv, E.
AU - Breese, G. R.
PY - 1984
Y1 - 1984
N2 - The antidopaminergic properties of thioridazine (THD) and its major metabolites were evaluated using in vitro and in vivo estimates of dopaminergic function. THD-2-sulfone was more potent than, and THD-2-sulfoxide equipotent to, THD in displacing [3]spiperone from rat striatal membranes and in inhibiting dopamine-stimulated cyclic adenosine 3',5'-monophosphate synthesis in rat striatal homogenates. Other major THD metabolites were relatively inactive. These in vitro data suggest that THD, THD-2-sulfone and THD-2-sulfoxide are potent dopamine receptor blocking agents. Intraperitoneally administered THD antagonized amphetamine-induced locomotion and also increased the concentration of the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in terminals of the nigrostriatal dopamine system. Conversely, THD administered i.c.v. into conscious animals, did not antagonize amphetamine-induced locomotion nor increase brain regional concentrations of DOPAC or HVA. On the other hand, the i.c.v. administration of THD-2-sulfone and THD-2-sulfoxide dose-dependently inhibited amphetamine-induced locomotion and also increased the concentrations of HVA and/or DOPAC in the striatum and olfactory tubercles. These apparently discrepant in vitro and in vivo data suggest that the biotransformation of THD is a major determinant in those actions of THD attributed to a blockade of dopamine receptors in the central nervous system.
AB - The antidopaminergic properties of thioridazine (THD) and its major metabolites were evaluated using in vitro and in vivo estimates of dopaminergic function. THD-2-sulfone was more potent than, and THD-2-sulfoxide equipotent to, THD in displacing [3]spiperone from rat striatal membranes and in inhibiting dopamine-stimulated cyclic adenosine 3',5'-monophosphate synthesis in rat striatal homogenates. Other major THD metabolites were relatively inactive. These in vitro data suggest that THD, THD-2-sulfone and THD-2-sulfoxide are potent dopamine receptor blocking agents. Intraperitoneally administered THD antagonized amphetamine-induced locomotion and also increased the concentration of the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in terminals of the nigrostriatal dopamine system. Conversely, THD administered i.c.v. into conscious animals, did not antagonize amphetamine-induced locomotion nor increase brain regional concentrations of DOPAC or HVA. On the other hand, the i.c.v. administration of THD-2-sulfone and THD-2-sulfoxide dose-dependently inhibited amphetamine-induced locomotion and also increased the concentrations of HVA and/or DOPAC in the striatum and olfactory tubercles. These apparently discrepant in vitro and in vivo data suggest that the biotransformation of THD is a major determinant in those actions of THD attributed to a blockade of dopamine receptors in the central nervous system.
UR - http://www.scopus.com/inward/record.url?scp=0021723526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021723526&partnerID=8YFLogxK
M3 - Article
C2 - 6491985
AN - SCOPUS:0021723526
SN - 0022-3565
VL - 231
SP - 334
EP - 342
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -