TY - JOUR
T1 - Efficacy of radio frequency treatment and its potential for control of sapstain and wood decay fungi on red oak, poplar, and southern yellow pine wood species
AU - Tubajika, Kayimbi Mendha
AU - Jonawiak, Jonh Jack
AU - Mack, Ronald
AU - Hoover, Kelli
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2007/6
Y1 - 2007/6
N2 - The effectiveness of radio frequency (RF) treatment in the control of wood decay fungi (Gloeophyllum trabeum, Ganoderma lucidum, and Irpex lacteus) and sapstain fungus (Ceratocystis fimbriata) in red oak (Quercus spp.), poplar (Populus alba), and southern yellow pine (Pinus spp.) was evaluated in the laboratory as an alternative to methyl bromide (MB) treatment. Wood samples (15.5 x 10 x 10 cm) were inoculated with fungi from a 7-day culture by dipping them to a depth of one face deep (2 cm) into inoculum and incubating them at 25°C for 14 days. Identical wood samples were left uninoculated as controls. Subsequent to incubation, the wood blocks were exposed to RF radiation in an industrial 40-kW dielectric oven at temperatures between 60° and 70°C for 2 min. The test fungi were recovered and reisolated from all of the control wood blocks but not from RF-treated wood blocks. RF treatment resulted in complete inhibition of the fungus in 98%-100% of the wood samples. Moisture content loss (≥1%) was noted after wood had been exposed to RF treatment. Moisture content may be an important factor to consider with RF treatments. RF treatment can, therefore, potentially provide an effective and rapid quarantine treatment as an alternative to MB fumigation for certain pathogen-wood combinations.
AB - The effectiveness of radio frequency (RF) treatment in the control of wood decay fungi (Gloeophyllum trabeum, Ganoderma lucidum, and Irpex lacteus) and sapstain fungus (Ceratocystis fimbriata) in red oak (Quercus spp.), poplar (Populus alba), and southern yellow pine (Pinus spp.) was evaluated in the laboratory as an alternative to methyl bromide (MB) treatment. Wood samples (15.5 x 10 x 10 cm) were inoculated with fungi from a 7-day culture by dipping them to a depth of one face deep (2 cm) into inoculum and incubating them at 25°C for 14 days. Identical wood samples were left uninoculated as controls. Subsequent to incubation, the wood blocks were exposed to RF radiation in an industrial 40-kW dielectric oven at temperatures between 60° and 70°C for 2 min. The test fungi were recovered and reisolated from all of the control wood blocks but not from RF-treated wood blocks. RF treatment resulted in complete inhibition of the fungus in 98%-100% of the wood samples. Moisture content loss (≥1%) was noted after wood had been exposed to RF treatment. Moisture content may be an important factor to consider with RF treatments. RF treatment can, therefore, potentially provide an effective and rapid quarantine treatment as an alternative to MB fumigation for certain pathogen-wood combinations.
UR - http://www.scopus.com/inward/record.url?scp=34250155248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250155248&partnerID=8YFLogxK
U2 - 10.1007/s10086-006-0844-x
DO - 10.1007/s10086-006-0844-x
M3 - Article
AN - SCOPUS:34250155248
SN - 1435-0211
VL - 53
SP - 258
EP - 263
JO - Journal of Wood Science
JF - Journal of Wood Science
IS - 3
ER -