Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer

W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang, C. Li

Research output: Contribution to journalArticlepeer-review

175 Scopus citations

Abstract

The interlayer inserted between the active layer and ITO has been demonstrated to be crucial for the performance of inverted polymer solar cells (i-PSCs). In this work, we find that ionic liquids (ILs) can significantly enhance the efficiency of i-PSCs. With the ZnO/IL interfacial layer, PTB7-Th:PC71BM i-PSCs can exhibit a champion power conversion efficiency (PCE) of 10.15%, which is among the highest PCEs reported thus far for single-junction bulk heterojunction solar cells through the solution process. The IL layer and ZnO/IL combination layer with low work function, good optical transmittance, improved electron extraction and reduced resistance at the cathode interface have been demonstrated to be excellent and general interfacial layers for i-PSCs.

Original languageEnglish (US)
Pages (from-to)10660-10665
Number of pages6
JournalJournal of Materials Chemistry A
Volume3
Issue number20
DOIs
StatePublished - May 28 2015

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer'. Together they form a unique fingerprint.

Cite this