Abstract
Human pluripotent stem cell (hPSC)-derived endothelial cells and their progenitors may provide the means for vascularization of tissue-engineered constructs and can serve as models to study vascular development and disease. Here, we report a method to efficiently produce endothelial cells from hPSCs via GSK3 inhibition and culture in defined media to direct hPSC differentiation to CD34+CD31+ endothelial progenitors. Exogenous vascular endothelial growth factor (VEGF) treatment was dispensable, and endothelial progenitor differentiation was b-catenin dependent. Furthermore, by clonal analysis, we showed that CD34+CD31+CD117+TIE-2+ endothelial progenitors were multipotent, capable of differentiating into calponin-expressing smooth muscle cells and CD31+CD144+vWF+I-CAM1+ endothelial cells. These endothelial cells were capable of 20 population doublings, formed tube-like structures, imported acetylated low-density lipoprotein, and maintained a dynamic barrier function. This study provides a rapid and efficient method for production of hPSC-derived endothelial progenitors and endothelial cells and identifies WNT/b-catenin signaling as a primary regulator for generating vascular cells from hPSCs.
Original language | English (US) |
---|---|
Pages (from-to) | 804-816 |
Number of pages | 13 |
Journal | Stem Cell Reports |
Volume | 3 |
Issue number | 5 |
DOIs | |
State | Published - 2014 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Genetics
- Developmental Biology
- Cell Biology