TY - JOUR
T1 - Efficient fair principal component analysis
AU - Kamani, Mohammad Mahdi
AU - Haddadpour, Farzin
AU - Forsati, Rana
AU - Mahdavi, Mehrdad
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature.
PY - 2022/10
Y1 - 2022/10
N2 - It has been shown that dimension reduction methods such as Principal Component Analysis (PCA) may be inherently prone to unfairness and treat data from different sensitive groups such as race, color, sex, etc., unfairly. In pursuit of fairness-enhancing dimensionality reduction, using the notion of Pareto optimality, we propose an adaptive first-order algorithm to learn a subspace that preserves fairness, while slightly compromising the reconstruction loss. Theoretically, we provide sufficient conditions that the solution of the proposed algorithm belongs to the Pareto frontier for all sensitive groups; thereby, the optimal trade-off between overall reconstruction loss and fairness constraints is guaranteed. We also provide the convergence analysis of our algorithm and show its efficacy through empirical studies on different datasets, which demonstrates superior performance in comparison with state-of-the-art algorithms. The proposed fairness-aware PCA algorithm can be efficiently generalized to multiple group sensitive features and effectively reduce the unfairness decisions in downstream tasks such as classification.
AB - It has been shown that dimension reduction methods such as Principal Component Analysis (PCA) may be inherently prone to unfairness and treat data from different sensitive groups such as race, color, sex, etc., unfairly. In pursuit of fairness-enhancing dimensionality reduction, using the notion of Pareto optimality, we propose an adaptive first-order algorithm to learn a subspace that preserves fairness, while slightly compromising the reconstruction loss. Theoretically, we provide sufficient conditions that the solution of the proposed algorithm belongs to the Pareto frontier for all sensitive groups; thereby, the optimal trade-off between overall reconstruction loss and fairness constraints is guaranteed. We also provide the convergence analysis of our algorithm and show its efficacy through empirical studies on different datasets, which demonstrates superior performance in comparison with state-of-the-art algorithms. The proposed fairness-aware PCA algorithm can be efficiently generalized to multiple group sensitive features and effectively reduce the unfairness decisions in downstream tasks such as classification.
UR - http://www.scopus.com/inward/record.url?scp=85122281824&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122281824&partnerID=8YFLogxK
U2 - 10.1007/s10994-021-06100-9
DO - 10.1007/s10994-021-06100-9
M3 - Article
AN - SCOPUS:85122281824
SN - 0885-6125
VL - 111
SP - 3671
EP - 3702
JO - Machine Learning
JF - Machine Learning
IS - 10
ER -