Efficient Gradient Approximation Method for Constrained Bilevel Optimization

Siyuan Xu, Minghui Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Bilevel optimization has been developed for many machine learning tasks with large-scale and high-dimensional data. This paper considers a constrained bilevel optimization problem, where the lower-level optimization problem is convex with equality and inequality constraints and the upper-level optimization problem is non-convex. The overall objective function is non-convex and non-differentiable. To solve the problem, we develop a gradient-based approach, called gradient approximation method, which determines the descent direction by computing several representative gradients of the objective function inside a neighborhood of the current estimate. We show that the algorithm asymptotically converges to the set of Clarke stationary points, and demonstrate the efficacy of the algorithm by the experiments on hyperparameter optimization and meta-learning.

Original languageEnglish (US)
Title of host publicationAAAI-23 Technical Tracks 10
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages12509-12517
Number of pages9
ISBN (Electronic)9781577358800
StatePublished - Jun 27 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Efficient Gradient Approximation Method for Constrained Bilevel Optimization'. Together they form a unique fingerprint.

Cite this