TY - GEN
T1 - Efficient mean shift belief propagation for vision tracking
AU - Park, Minwoo
AU - Liu, Yanxi
AU - Collins, Robert
PY - 2008
Y1 - 2008
N2 - A mechanism for efficient mean-shift belief propagation (MSBP) is introduced. The novelty of our work is to use mean-shift to perform nonparametric mode-seeking on belief surfaces generated within the belief propagation framework. Belief Propagation (BP) is a powerful solution for performing inference in graphical models. However, there is a quadratic increase in the cost of computation with respect to the size of the hidden variable space. While the recently proposed nonparametric belief propagation (NBP) has better performance in terms of speed, even for continuous hidden variable spaces, computation is still slow due to the particle filter sampling process. Our MSBP method only needs to compute a local grid of samples of the belief surface during each iteration. This approach needs a significantly smaller number of samples than NBP, reducing computation time, yet it also yields more accurate and stable solutions. The efficiency and robustness of MSBP is compared against other variants of BP on applications in multi-target tracking and 2D articulated body tracking.
AB - A mechanism for efficient mean-shift belief propagation (MSBP) is introduced. The novelty of our work is to use mean-shift to perform nonparametric mode-seeking on belief surfaces generated within the belief propagation framework. Belief Propagation (BP) is a powerful solution for performing inference in graphical models. However, there is a quadratic increase in the cost of computation with respect to the size of the hidden variable space. While the recently proposed nonparametric belief propagation (NBP) has better performance in terms of speed, even for continuous hidden variable spaces, computation is still slow due to the particle filter sampling process. Our MSBP method only needs to compute a local grid of samples of the belief surface during each iteration. This approach needs a significantly smaller number of samples than NBP, reducing computation time, yet it also yields more accurate and stable solutions. The efficiency and robustness of MSBP is compared against other variants of BP on applications in multi-target tracking and 2D articulated body tracking.
UR - http://www.scopus.com/inward/record.url?scp=51949103187&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51949103187&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587508
DO - 10.1109/CVPR.2008.4587508
M3 - Conference contribution
AN - SCOPUS:51949103187
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -