TY - GEN

T1 - Efficient quantum algorithms for simulating lindblad evolution

AU - Cleve, Richard

AU - Wang, Chunhao

N1 - Publisher Copyright:
© Richard Cleve and Chunhao Wang;.

PY - 2017/7/1

Y1 - 2017/7/1

N2 - We consider the natural generalization of the Schrödinger equation to Markovian open system dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating the evolution of an n-qubit system for time t within precision ϵ. If the Lindbladian consists of poly(n) operators that can each be expressed as a linear combination of poly(n) tensor products of Pauli operators then the gate cost of our algorithm is O(t polylog(t/ϵ)poly(n)). We also obtain similar bounds for the cases where the Lindbladian consists of local operators, and where the Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution as Schrödinger evolution on a larger system and tracing out the ancillary system: the cost of such a reduction incurs an efficiency overhead of O(t2/ϵ) even before the Hamiltonian evolution simulation begins. Instead, the approach of our algorithm is to use a novel variation of the "linear combinations of unitaries" construction that pertains to channels.

AB - We consider the natural generalization of the Schrödinger equation to Markovian open system dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating the evolution of an n-qubit system for time t within precision ϵ. If the Lindbladian consists of poly(n) operators that can each be expressed as a linear combination of poly(n) tensor products of Pauli operators then the gate cost of our algorithm is O(t polylog(t/ϵ)poly(n)). We also obtain similar bounds for the cases where the Lindbladian consists of local operators, and where the Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution as Schrödinger evolution on a larger system and tracing out the ancillary system: the cost of such a reduction incurs an efficiency overhead of O(t2/ϵ) even before the Hamiltonian evolution simulation begins. Instead, the approach of our algorithm is to use a novel variation of the "linear combinations of unitaries" construction that pertains to channels.

UR - http://www.scopus.com/inward/record.url?scp=85027247731&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027247731&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.ICALP.2017.17

DO - 10.4230/LIPIcs.ICALP.2017.17

M3 - Conference contribution

AN - SCOPUS:85027247731

T3 - Leibniz International Proceedings in Informatics, LIPIcs

BT - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017

A2 - Muscholl, Anca

A2 - Indyk, Piotr

A2 - Kuhn, Fabian

A2 - Chatzigiannakis, Ioannis

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

T2 - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017

Y2 - 10 July 2017 through 14 July 2017

ER -