TY - GEN
T1 - Electric field responsive origami structures using electrostriction-based active materials
AU - Ahmed, Saad
AU - Arrojado, Erika
AU - Sigamani, Nirmal
AU - Ounaies, Zoubeida
N1 - Publisher Copyright:
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
PY - 2015
Y1 - 2015
N2 - The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.
AB - The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.
UR - http://www.scopus.com/inward/record.url?scp=84943404736&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943404736&partnerID=8YFLogxK
U2 - 10.1117/12.2084785
DO - 10.1117/12.2084785
M3 - Conference contribution
AN - SCOPUS:84943404736
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Behavior and Mechanics of Multifunctional Materials and Composites 2015
A2 - Goulbourne, Nakhiah C.
PB - SPIE
T2 - Behavior and Mechanics of Multifunctional Materials and Composites 2015
Y2 - 9 March 2015 through 11 March 2015
ER -