TY - GEN
T1 - ELECTRICAL CHARACTERISTICS OF THE OXYFUEL PREHEAT FLAME
T2 - ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022
AU - Rahman, S. M.Mahbobur
AU - Warrier, Rohith
AU - Untaroiu, Alexandrina
AU - Martin, Christopher R.
N1 - Publisher Copyright:
Copyright © 2022 by ASME.
PY - 2022
Y1 - 2022
N2 - A three-dimensional (3D) computational model is presented in this paper that illustrates the detailed electrical characteristics, and the current-voltage (i-v) relationship throughout the preheating process of premixed methane-oxygen oxyfuel cutting flame subject to electric bias voltages. As such, the equations describing combustion, electrochemical transport for charged species, and potential are solved through a commercially available finite-volume Computational Fluid Dynamics (CFD) code. The reactions of the methane-oxygen (CH4 – O2) flame were combined with a reduced mechanism, and additional ionization reactions that generate three chemi-ions, H3O+, HCO+, and e– , to describe the chemistry of ions in flames. The electrical characteristics such as ion migrations and ion distributions are investigated for a range of electric potential, V ∈ [-5V, +5V]. Since the physical flame is comprised of twelve Bunsen-like conical flame, inclusion of the third dimension imparts the resolution of fluid mechanics and the interaction among the individual cones. It was concluded that charged ‘sheaths’ are formed at both torch and workpiece surfaces, subsequently forming three distinct regimes in the i-v relationship. The i-v characteristics obtained out of the current study have been compared to the previous experimental and two-dimensional (2D) computational model for premixed flame. In this way, the overall model generates a better understanding of the physical behavior of the oxyfuel cutting flames, along with a more validated i-v characteristics. Such understanding might provide critical information towards achieving an autonomous oxyfuel cutting process.
AB - A three-dimensional (3D) computational model is presented in this paper that illustrates the detailed electrical characteristics, and the current-voltage (i-v) relationship throughout the preheating process of premixed methane-oxygen oxyfuel cutting flame subject to electric bias voltages. As such, the equations describing combustion, electrochemical transport for charged species, and potential are solved through a commercially available finite-volume Computational Fluid Dynamics (CFD) code. The reactions of the methane-oxygen (CH4 – O2) flame were combined with a reduced mechanism, and additional ionization reactions that generate three chemi-ions, H3O+, HCO+, and e– , to describe the chemistry of ions in flames. The electrical characteristics such as ion migrations and ion distributions are investigated for a range of electric potential, V ∈ [-5V, +5V]. Since the physical flame is comprised of twelve Bunsen-like conical flame, inclusion of the third dimension imparts the resolution of fluid mechanics and the interaction among the individual cones. It was concluded that charged ‘sheaths’ are formed at both torch and workpiece surfaces, subsequently forming three distinct regimes in the i-v relationship. The i-v characteristics obtained out of the current study have been compared to the previous experimental and two-dimensional (2D) computational model for premixed flame. In this way, the overall model generates a better understanding of the physical behavior of the oxyfuel cutting flames, along with a more validated i-v characteristics. Such understanding might provide critical information towards achieving an autonomous oxyfuel cutting process.
UR - http://www.scopus.com/inward/record.url?scp=85148487628&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148487628&partnerID=8YFLogxK
U2 - 10.1115/IMECE2022-95787
DO - 10.1115/IMECE2022-95787
M3 - Conference contribution
AN - SCOPUS:85148487628
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Fluids Engineering; Heat Transfer and Thermal Engineering
PB - American Society of Mechanical Engineers (ASME)
Y2 - 30 October 2022 through 3 November 2022
ER -