Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals

Gan Liu, Tianyu Qiu, Kuanyu He, Yizhou Liu, Dongjing Lin, Zhen Ma, Zhentao Huang, Wenna Tang, Jie Xu, Kenji Watanabe, Takashi Taniguchi, Libo Gao, Jinsheng Wen, Jun Ming Liu, Binghai Yan, Xiaoxiang Xi

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Hysteretic switching of domain states is a salient characteristic of all ferroic materials and the foundation for their multifunctional applications. Ferro-rotational order is emerging as a type of ferroic order that features structural rotations, but control over state switching remains elusive due to its invariance under both time reversal and spatial inversion. Here we demonstrate electrical switching of ferro-rotational domain states in the charge-density-wave phases of nanometre-thick 1T-TaS2 crystals. Cooling from the high-symmetry phase to the ferro-rotational phase under an external electric field induces domain state switching and domain wall formation, which is realized in a simple two-terminal configuration using a volt-scale bias. Although the electric field does not couple with the order due to symmetry mismatch, it drives domain wall propagation to give rise to reversible, durable and non-volatile isothermal state switching at room temperature. These results offer a route to the manipulation of ferro-rotational order and its nanoelectronic applications.

Original languageEnglish (US)
Pages (from-to)854-860
Number of pages7
JournalNature nanotechnology
Volume18
Issue number8
DOIs
StatePublished - Aug 2023

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals'. Together they form a unique fingerprint.

Cite this