Abstract
Increasing the thermal and electrical conductivity of typically insulating polymers, such as nylon 6,6, opens new markets. A thermally conductive resin can be used for heat sink applications. An electrically conductive resin can be used in static dissipative and Electromagnetic Interference/Radio Frequency Interference shielding applications. This research focused on adding various carbon based conductive fillers and a chopped glass fiber to nylon 6,6. These materials were extruded and injection molded into test specimens. Tensile tests as well as in-plane electrical resistivity, in-plane thermal conductivity, and through-plane thermal conductivity tests were conducted. One successful formulation consisted of 10% 3.2 mm chopped E-glass fiber/15% Thermocarb (high quality synthetic powdered graphite)/5% carbon black/70% nylon 6,6 (all % in wt%). For this formulation, the in-plane electrical resistivity was reduced from 1015 ohm-cm (neat nylon 6,6) to 15 ohm-cm. The through-plane thermal conductivity increased from 0.25 W/mK (neat nylon 6,6) to 0.7 W/mK. The tensile elongation at failure was 1.4%.
Original language | English (US) |
---|---|
Pages (from-to) | 643-654 |
Number of pages | 12 |
Journal | Polymer Composites |
Volume | 20 |
Issue number | 5 |
DOIs | |
State | Published - 1999 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- General Chemistry
- Polymers and Plastics
- Materials Chemistry