Abstract
Biomass upgrading-the conversion of biomass waste into value-added products-provides a possible solution to reduce global dependency on nonrenewable resources. This study investigates the possibility of green biomass upgrading for lactic acid production by electrochemically-driven degradation of glucose. Herein we report an electrooxidized copper(ii) electrode which exhibits a turnover frequency of 5.04 s-1 for glucose conversion. Chronoamperometry experiments under varied potentials, alkalinity, and electrode preparation achieved a maximum lactic acid yield of 23.3 ± 1.2% and selectivity of 31.1 ± 1.9% (1.46 V vs. RHE, 1.0 M NaOH) for a room temperature and open-to-atmosphere reaction. Comparison between reaction conditions revealed lactic acid yield depends on alkalinity and applied potential, while pre-oxidation of the copper had a negligible effect on yield. Post-reaction cyclic voltammetry studies indicated no loss in reactivity for copper(ii) electrodes after a 30 hour reaction. Finally, a mechanism dependent on solvated Cu2+ species is proposed as evidenced by similar product distributions in electrocatalytic and thermocatalytic systems.
Original language | English (US) |
---|---|
Pages (from-to) | 31208-31218 |
Number of pages | 11 |
Journal | RSC Advances |
Volume | 11 |
Issue number | 50 |
DOIs | |
State | Published - Sep 15 2021 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering