Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation

G. Ya Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A. V. Gusakov

Research output: Contribution to journalArticlepeer-review

436 Scopus citations

Abstract

Effective boundary conditions, in the form of two-sided impedance boundary conditions, are formulated for the linear electrodynamics of single- and multishell carbon nanotubes (CN’s). The impedance is derived using the dynamic conductivity of CN’s, which is obtained for different CN’s (zigzag, armchair, and chiral) in the frame of the semiclassical as well as quantum-mechanical treatments. Propagation of surface waves in CN’s is considered. The phase velocities and the slow-wave coefficients of surface waves are explored for a wide frequency range, from the microwave to the ultraviolet regimes. Relaxation is shown to qualitatively change the dispersion characteristics in the low-frequency limit, thereby rendering the existence of weakly retarded plasmons impossible. A dispersionless propagation regime is shown possible for the surface waves in the infrared regime. Attenuation and retardation in metallic and semiconductor CN’s are compared.

Original languageEnglish (US)
Pages (from-to)17136-17149
Number of pages14
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume60
Issue number24
DOIs
StatePublished - 1999

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation'. Together they form a unique fingerprint.

Cite this