Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane

Danielle A. Salvatore, David M. Weekes, Jingfu He, Kevan E. Dettelbach, Yuguang C. Li, Thomas E. Mallouk, Curtis P. Berlinguette

Research output: Contribution to journalArticlepeer-review

249 Scopus citations


The conversion of CO2 to CO is demonstrated in an electrolyzer flow cell containing a bipolar membrane at current densities of 200 mA/cm2 with a Faradaic efficiency of 50%. Electrolysis was carried out by delivering gaseous CO2 at the cathode with a silver catalyst integrated in a carbon-based gas diffusion layer. Nonprecious nickel foam in a strongly alkaline electrolyte (1 M NaOH) was used to mediate the anode reaction. While a configuration where the anode and cathode were separated by only a bipolar membrane was found to be unfavorable for robust CO2 reduction, a modified configuration with a solid-supported aqueous layer inserted between the silver-based catalyst layer and the bipolar membrane enhanced the cathode selectivity for CO2 reduction to CO. We report higher current densities (200 mA/cm2) than previously reported for gas-phase CO2 to CO electrolysis and demonstrate the dependence of long-term stability on adequate hydration of the CO2 inlet stream.

Original languageEnglish (US)
Pages (from-to)149-154
Number of pages6
JournalACS Energy Letters
Issue number1
StatePublished - Jan 12 2018

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry


Dive into the research topics of 'Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane'. Together they form a unique fingerprint.

Cite this