Electronic properties of high-performance capacitor materials and nanoscale multiterminal devices

J. Bernholc, L. Yu, V. Ranjan, M. Buongiorno Nardelli, W. Lu, K. Saha, V. Meunier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent advances in theoretical methods combined with the advent of massively-parallel supercomputers allow one to reliably simulate the properties of complex materials and device structures from first principles. We describe applications in two general areas: (i) novel ferroelectric oxide-polymer composites for ultrahigh power density capacitors, necessary for pulsed power applications, such as electric discharges, power conditioning, and dense electronic circuitry, and (ii) electron transport properties of ballistic, multi-terminal molecular devices, which could form the basis for ultraspeed electronics and spintronics. For capacitor materials, we investigate the dielectric properties of PbTiO3 slabs and polypropylene/PbTiO 3 nanocomposites. We evaluate both the optical and static local dielectric permittivity profiles for isolated PbTiO3 slabs and across the polypropylene/PbTiO3 interface. For thin ferroelectric slabs, we find that in order to maintain the ferroelectric structure, it is necessary to introduce compensating surface charges. Our results show that: (i) the surface-and interface-induced modifications to dielectric permittivity in polymer/metal-oxide composites are localized to only a few atomic layers; (ii) the interface effects are mainly confined to the metal-oxide side; and (iii) metal-oxide particles larger than a few nanometers retain the average macroscopic value of bulk dielectric permittivity. Turning to nanoelectronic devices, we investigate ballistic electron transport through a paradigmatic four-terminal molecular electronic device. In contrast to a conventional two-terminal setup, the same organic molecule placed between four electrodes exhibits new properties, such as a pronounced negative differential resistance.

Original languageEnglish (US)
Title of host publicationDepartment of Defense Proceedings of the High Performance Computing Modernization Program - Users Group Conference, HPCMP-UGC 2009
Pages313-320
Number of pages8
DOIs
StatePublished - 2009
Event2009 DoD High Performance Computing Modernization Program - Users Group Conference, HPCMP-UGC 2009 - San Diego, CA, United States
Duration: Jun 15 2009Jun 18 2009

Publication series

NameDepartment of Defense Proceedings of the High Performance Computing Modernization Program - Users Group Conference, HPCMP-UGC 2009

Other

Other2009 DoD High Performance Computing Modernization Program - Users Group Conference, HPCMP-UGC 2009
Country/TerritoryUnited States
CitySan Diego, CA
Period6/15/096/18/09

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Electronic properties of high-performance capacitor materials and nanoscale multiterminal devices'. Together they form a unique fingerprint.

Cite this