Abstract
Electrostriction is the basis of electromechanical coupling in all insulators. The quadratic electrostrictive strain xij associated with induced polarization components Pk and Pl is given by xij = QijklPkPl. Two converse electrostrictive effects may also be defined. In this paper, some trends in structure-property relationships that govern electrostriction are identified, along with the problems that limit our understanding of this fundamental electromechanical property. Electrostrictive coefficients range from the ∼10-3 m4/C2 in relaxor ferroelectrics to ∼103 m4/C2 in some polymers. High-sensitivity techniques, such as interferometry or compressometry, are necessary to accurately measure electrostrictive effects in most insulators. But even in low-K dielectrics, electrostrictive stresses may initiate breakdown in high-field environments such as microelectronic components with small dimensions, high-voltage insulators, or in high-power lasers. In polymeric materials, charge injection mechanisms may produce local electric field concentrations that can cause large electrostrictive strains. The electromechanical properties in polymers have also been observed to vary with the thickness of the specimen. A brief description of the anharmonic nature of electrostriction and its frequency dependence is included.
Original language | English (US) |
---|---|
Pages (from-to) | 10141-10150 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry B |
Volume | 101 |
Issue number | 48 |
DOIs | |
State | Published - Nov 27 1997 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry