Electrothermal energetic plasma source concept for high-enthalpy flow and electrothermal-chemical applications

A. Leigh Winfrey, Mohamed A.Abd Al-Halim, Shawn Mittal, Mohamed A. Bourham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The electrothermal energetic plasma source (ETEPS) is a new concept in which the ablative mechanism is forced inside of the capillary which has energetic liner, i.e. a chemical propellant. The generation of the electrothermal plasma results from Joule heating and radiant heat transport to the liner. The discharge initiates erosive burn of the propellant and the mixed plasma-propellant gasification produces high enthalpy energetic flow. In the ablation-dominated capillary discharge the eroded materials from the solid propellant liner are mixed inside the source before flowing out as a result of the large pressure gradient. The energetic electrothermal source may also be used in a regime where no ablation occurs, where the plasma is generated from the injection of energetic gasses or liquids into the confined capillary. The ablation-free source generates the plasma from the dissociation of the gaseous/liquid components, which in turn releases the chemical energy of these propellants and mixing the energy with the electrical energy of the plasma. This concept is different from electrothermal chemical sources; it generates the propellant or energetic flow without requiring a combustion chamber. It also provides mixing at the ionic level not available in current configurations of electrothermal chemical launchers, igniters, or thrusters. The electrothermal plasma code ETFLOW-EN was developed to computationally simulate the plasma generation and flow in energetic ET capillary discharges to predict the behavior of the energetic source with the use of lined solid propellants. Operation with liquid/gaseous energetic forms in a non-ablative capillary is also a character of this concept and is part of the ETFLOW code. Results of using different forms of energetic materials in solid, liquid and gaseous mixtures have shown the applicability of ETEPS to produce high enthalpy energetic plasma flows with sufficient parameters suitable for ETC launch applications.

Original languageEnglish (US)
Title of host publicationConference Proceedings - EML 2014 17th International Symposium on Electromagnetic Launch Technology
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479927333
DOIs
StatePublished - Oct 10 2014
Event2014 17th International Symposium on Electromagnetic Launch Technology, EML 2014 - San Diego, United States
Duration: Jul 7 2014Jul 11 2014

Publication series

NameConference Proceedings - EML 2014 17th International Symposium on Electromagnetic Launch Technology

Conference

Conference2014 17th International Symposium on Electromagnetic Launch Technology, EML 2014
Country/TerritoryUnited States
CitySan Diego
Period7/7/147/11/14

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Electrical and Electronic Engineering
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Electrothermal energetic plasma source concept for high-enthalpy flow and electrothermal-chemical applications'. Together they form a unique fingerprint.

Cite this