TY - JOUR
T1 - Elongation factor-2 kinase
T2 - Its role in protein synthesis and autophagy
AU - Hait, William N.
AU - Wu, Hao
AU - Jin, Shenkan
AU - Yang, Jin Ming
PY - 2006
Y1 - 2006
N2 - Elongation factor-2 kinase (eEF-2 kinase; Ca2+/calmodulin- dependent kinase III) controls the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in many malignancies, yet its precise function in carcinogenesis remains unknown. Autophagy, a well-defined survival pathway in yeast, may also play an important role in oncogenesis. Furthermore, the autophagic response to nutrient deprivation is regulated by the mammalian target of rapamycin (mTOR). eEF-2 kinase lies downstream of mTOR and is regulated by several kinases in this pathway. Therefore, we studied the role of eEF-2 kinase in autophagy. Knockdown of eEF-2 kinase by RNA interference inhibited autophagy in several cell types as measured by light chain 3 (LC3)-II formation, acidic vesicular organelle staining, and electron microscopy. In contrast, overexpression of eEF-2 kinase increased autophagy. Furthermore, inhibition of autophagy markedly decreased the viability of glioblastoma cells grown under conditions of nutrient depletion. These results suggest that eEF-2 kinase plays a regulatory role in the autophagic process in tumor cells and may promote cancer cell survival under conditions of nutrient deprivation. Therefore, eEF-2 kinase activation may be a part of a survival mechanism in glioblastoma, and targeting this kinase may represent a novel approach to cancer treatment.
AB - Elongation factor-2 kinase (eEF-2 kinase; Ca2+/calmodulin- dependent kinase III) controls the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in many malignancies, yet its precise function in carcinogenesis remains unknown. Autophagy, a well-defined survival pathway in yeast, may also play an important role in oncogenesis. Furthermore, the autophagic response to nutrient deprivation is regulated by the mammalian target of rapamycin (mTOR). eEF-2 kinase lies downstream of mTOR and is regulated by several kinases in this pathway. Therefore, we studied the role of eEF-2 kinase in autophagy. Knockdown of eEF-2 kinase by RNA interference inhibited autophagy in several cell types as measured by light chain 3 (LC3)-II formation, acidic vesicular organelle staining, and electron microscopy. In contrast, overexpression of eEF-2 kinase increased autophagy. Furthermore, inhibition of autophagy markedly decreased the viability of glioblastoma cells grown under conditions of nutrient depletion. These results suggest that eEF-2 kinase plays a regulatory role in the autophagic process in tumor cells and may promote cancer cell survival under conditions of nutrient deprivation. Therefore, eEF-2 kinase activation may be a part of a survival mechanism in glioblastoma, and targeting this kinase may represent a novel approach to cancer treatment.
UR - http://www.scopus.com/inward/record.url?scp=33748436057&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748436057&partnerID=8YFLogxK
U2 - 10.4161/auto.2857
DO - 10.4161/auto.2857
M3 - Article
C2 - 16921268
AN - SCOPUS:33748436057
SN - 1554-8627
VL - 2
SP - 294
EP - 296
JO - Autophagy
JF - Autophagy
IS - 4
ER -