Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma

Jiefeng Luo, Mika Pan, Ke Mo, Yingwei Mao, Donghua Zou

Research output: Contribution to journalReview articlepeer-review

38 Scopus citations

Abstract

Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.

Original languageEnglish (US)
Pages (from-to)110-123
Number of pages14
JournalSeminars in Cancer Biology
Volume91
DOIs
StatePublished - Jun 2023

All Science Journal Classification (ASJC) codes

  • Cancer Research

Fingerprint

Dive into the research topics of 'Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma'. Together they form a unique fingerprint.

Cite this