Abstract
The research project investigates the use of a network-enabled platform (NEP) involving a combination of technologies that include: high bandwidth network infrastructure; high-performance visualization and computer cluster solutions; standard and high definition tele-presence/communication infrastructure; co-located immersive environments; and a range of modeling and imaging applications. The NEP enabled student teams in multiple locations to collaborate via on-demand, synchronous access to project data, visualization, modeling, simulation and multimodal interpersonal communication tools through a web service based dashboard interface that hid the logistic and technical complexities to the user. As a preliminary report on a proof-of-concept design studio conducted during the spring semester of 2007 between the Carleton Immersive Media Studio (CIMS) at Carleton University in Ottawa and the Immersive Environment Laboratory (IEL) at Pennsylvania State University, the paper first describes the implementation of this network-cewin'c collaborative design platform. The report articulates the "staging" of the conditions of possibility for a dynamic interplay between technological mediation and the reality of making, then compares the use of high bandwidth technology with customized symmetrical toolsets in the tele-collaborative educational environment, versus commercial toolsets deployed over moderate bandwidth connections. In each setting, the collaborative environment is assessed according to issues encountered by students and design outcomes. The effectiveness of the digitally mediated collaborative studio is also gauged in terms of student reaction to the learning process via feedback surveys and questionnaires.
Original language | English (US) |
---|---|
Pages (from-to) | 660-673 |
Number of pages | 14 |
Journal | Electronic Journal of Information Technology in Construction |
Volume | 13 |
State | Published - Dec 2008 |
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Building and Construction
- Computer Science Applications