Abstract
Empirical likelihood was introduced as a nonparametric analogue of ordinary parametric likelihood. It is well known that the empirical likelihood ratio statistic inherits a number of properties of the parametric likelihood ratio statistic, such as the asymptotic chi-squared distribution and Bartlett correctability. This raises the question of whether or not the same is true in the presence of nuisance parameters. Recent work by Qin & Lawless (1994) indicates that the chi-squared distribution is still valid to first order. We show that, when nuisance parameters are present, as introduced via a system of estimating equations, the asymptotic expansion for the signed square root of the empirical likelihood ratio statistic has a nonstandard form. This implies that the empirical likelihood ratio statistic itself does not permit a Bartlett correction.
Original language | English (US) |
---|---|
Pages (from-to) | 203-211 |
Number of pages | 9 |
Journal | Biometrika |
Volume | 86 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Mathematics(all)
- Agricultural and Biological Sciences (miscellaneous)
- Agricultural and Biological Sciences(all)
- Statistics, Probability and Uncertainty
- Applied Mathematics