Enabling a small scale gas-to-liquid process

Jan Joseph Lerou

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Minichannel process technology offers process intensification, in the form of enhanced heat and mass transfer, to a wide range of chemical reactions. This paper discusses the application of minichannel technology to the production of ultra-clean synthetic fuels. These fuels, which are one-to-one replacements for petroleum derived fuels, are produced by passing synthesis gas (syngas), a mixture of carbon monoxide and hydrogen, over a cobalt or iron catalyst; a process known as Fischer-Tropsch (FT) synthesis for its German inventors. The most efficient path to syngas is the conversion of natural gas via steam methane reforming (SMR). Both the SMR and FT benefit from the process intensification offered by minichannel technology, resulting in smaller, less costly processing hardware; thus, enabling cost effective production of synthetic fuels from smaller facilities, appropriate for stranded and associated gas resources, both on and offshore. The products from FT processes can be upgraded into diesel or synthetic paraffinic kerosene, or simply blended with crude oil for transport to the world market. Leading companies in this field included Chart Industries (USA), CompactGTL (UK), and Velocys, Inc. (USA).

Original languageEnglish (US)
Title of host publication11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings
StatePublished - Dec 1 2011
Event2011 AIChE Annual Meeting, 11AIChE - Minneapolis, MN, United States
Duration: Oct 16 2011Oct 21 2011

Publication series

Name11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings


Other2011 AIChE Annual Meeting, 11AIChE
Country/TerritoryUnited States
CityMinneapolis, MN

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering


Dive into the research topics of 'Enabling a small scale gas-to-liquid process'. Together they form a unique fingerprint.

Cite this