TY - GEN
T1 - End-to-End Graph-Constrained Vectorized Floorplan Generation with Panoptic Refinement
AU - Liu, Jiachen
AU - Xue, Yuan
AU - Duarte, Jose
AU - Shekhawat, Krishnendra
AU - Zhou, Zihan
AU - Huang, Xiaolei
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - The automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network (PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.
AB - The automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network (PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.
UR - http://www.scopus.com/inward/record.url?scp=85142674425&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142674425&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-19784-0_32
DO - 10.1007/978-3-031-19784-0_32
M3 - Conference contribution
AN - SCOPUS:85142674425
SN - 9783031197833
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 547
EP - 562
BT - Computer Vision – ECCV 2022 - 17th European Conference, 2022, Proceedings
A2 - Avidan, Shai
A2 - Brostow, Gabriel
A2 - Cissé, Moustapha
A2 - Farinella, Giovanni Maria
A2 - Hassner, Tal
PB - Springer Science and Business Media Deutschland GmbH
T2 - 17th European Conference on Computer Vision, ECCV 2022
Y2 - 23 October 2022 through 27 October 2022
ER -