Energy landscape modeling of crystal nucleation

Collin J. Wilkinson, Daniel R. Cassar, Anthony V. DeCeanne, Katelyn A. Kirchner, Matthew E. McKenzie, Edgar D. Zanotto, John C. Mauro

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Nucleation is a crucial phase transformation process across all materials science. In the context of crystal nucleation, accurate knowledge of the nucleation rate is essential for the design of next-generation glass-ceramic and other composite materials; however, the quantitative prediction of crystal nucleation rate versus temperature remains elusive. This work proposes an energy landscape method to account for the thermodynamic and kinetics aspects of nucleation. This energy landscape approach shows fair agreement with experimental nucleation data for the barium disilicate system used as a model. It is also used to gain insight into the fundamental physics of classical nucleation theory (CNT) and a new method to compute nucleation rates.

Original languageEnglish (US)
Article number117163
JournalActa Materialia
Volume217
DOIs
StatePublished - Sep 15 2021

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Energy landscape modeling of crystal nucleation'. Together they form a unique fingerprint.

Cite this