Energy management in software-controlled multi-level memory hierarchies

O. Ozturk, M. Kandemir

Research output: Contribution to conferencePaperpeer-review

Abstract

Performance and energy consumption behavior of embedded applications are increasingly being dependent on their memory usage/access patterns. Focusing on a software-managed, application-specific multi-level memory hierarchy, this paper studies three different memory hierarchy management schemes from both energy and performance angles. The first scheme is pure performance-oriented and tuned for extracting the maximum performance possible from the software-managed multi-level memory hierarchy. The second scheme is built upon the first one but it also reduces leakage by turning-on and off memory modules (i.e., different memory levels) at appropriate program points during execution based on the data access pattern information extracted by the compiler. The last scheme evaluated is oriented towards further reducing leakage energy, as well as dynamic energy, by modifying the data transfer policy (data access pattern) of the performance-oriented scheme. Our empirical analysis indicates that it is possible to reduce leakage consumption of the application-specific multi-level memory hierarchy without seriously impacting its performance, and that one can achieve further savings by modifying data transfer pattern across the different levels of the memory hierarchy.

Original languageEnglish (US)
Pages270-275
Number of pages6
DOIs
StatePublished - 2005
Event2005 ACM Great Lakessymposium on VLSI, GLSVLSI'05 - Chicago, IL, United States
Duration: Apr 17 2005Apr 19 2005

Other

Other2005 ACM Great Lakessymposium on VLSI, GLSVLSI'05
Country/TerritoryUnited States
CityChicago, IL
Period4/17/054/19/05

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Energy management in software-controlled multi-level memory hierarchies'. Together they form a unique fingerprint.

Cite this