Engraftment and Measurable Residual Disease Monitoring after Hematopoietic Stem Cell Transplantation: Comparison of Two Chimerism Test Strategies, Next-Generation Sequencing versus a Combination of Short-Tandem Repeats and Quantitative PCR

Aiwen Zhang, Stacey Macecevic, Dawn Thomas, Jeffrey Allen, Sarah Mandley, Paul Kawczak, Raymond Jurcago, Jennifer Tyler, Heather Casey, David Bosler, Ronald Sobecks, Betty Hamilton, Craig Sauter, Shin Mineishi, David Claxton, Hiroko Shike

Research output: Contribution to journalArticlepeer-review


Chimerism testing supports the study of engraftment and measurable residual disease (MRD) in patients after allogeneic hematopoietic stem cell transplant. In chimerism MRD, relapse can be predicted by increasing mixed chimerism (IMC), recipient increase ≥0.1% in peripheral blood, and proliferating recipient cells as a surrogate of tumor activity. Conventionally, the combination of short-tandem repeat (STR) and quantitative PCR (qPCR) was needed to ensure assay sensitivity and accuracy in all chimerism status. We evaluated the use of next-generation sequencing (NGS) as an alternate technique. The median numbers of informative markers in unrelated/related cases were 124/82 (NGS; from 202 single-nucleotide polymorphism), 5/3 (qPCR), and 17/10 (STR). Assay sensitivity was 0.22% (NGS), 0.1% (qPCR), and 1% (STR). NGS batch (4 to 48 samples) required 19.60 to 24.80 hours and 1.52 to 2.42 hours of hands-on time (comparable to STR/qPCR). NGS assay cost/sample was $91 to $151, similar to qPCR ($99) but higher than STR ($27). Using 56 serial DNAs from six post-transplant patients monitored by the qPCR/STR, the correlation with NGS was strong for percentage recipient (y = 1.102x + 0.010; R2 = 0.968) and percentage recipient change (y = 0.892x + 0.041; R2 = 0.945). NGS identified all 17 IMC events detected by qPCR (100% sensitivity). The NGS chimerism provides sufficient sensitivity, accuracy, and economical/logistical feasibility in supporting engraftment and MRD monitoring.

Original languageEnglish (US)
Pages (from-to)233-244
Number of pages12
JournalJournal of Molecular Diagnostics
Issue number4
StatePublished - Apr 2024

All Science Journal Classification (ASJC) codes

  • Pathology and Forensic Medicine
  • Molecular Medicine

Cite this