Abstract
The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting the system for reuse.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 10918-10921 |
| Number of pages | 4 |
| Journal | Chemical Communications |
| Volume | 53 |
| Issue number | 79 |
| DOIs | |
| State | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry