Abstract
Air-cathodes in microbial fuel cells that can also filter wastewater provide the dual benefits of electricity production and reduction of the effluent chemical oxygen demand. Air-cathodes prepared using a novel activated carbon/graphene membrane (2, 5 or 10% graphene by weight) prepared by phase inversion have good conductivities (5.6 ± 0.5 to 7.3 ± 0.6 mS cm−1) compared to control (3.0 ± 0.4 mS cm−1, activated carbon, no graphene). The cathode with 5 wt% graphene produces the highest maximum power density of 1460 ± 10 mW m−2, which is 58% higher than that the control (928 ± 8 mW m−2). The increased power is due to an 88% reduction in charge transfer resistance of 6.0 ± 0.3 Ω (cathode with 5 wt% graphene) compared to the control. Following a cycle of treatment and current generation, 60 ± 1% of the chemical oxygen demand is removed from the remaining chemical oxygen demand, producing an effluent chemical oxygen demand concentration of 20 ± 1 mg L−1. Biomass (4.99 ± 0.02 mg-protein cm−2) is decreased by 33% compared to the control. These results demonstrate that cathodes made with graphene can produce electricity and a high quality effluent with low cathode biofouling.
Original language | English (US) |
---|---|
Pages (from-to) | 221-227 |
Number of pages | 7 |
Journal | Journal of Power Sources |
Volume | 395 |
DOIs | |
State | Published - Aug 15 2018 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering