TY - GEN
T1 - Enhanced production of bacterial cellulose under agitated condition and its material property analysis
AU - Cheng, Kuan Chen
AU - Catchmark, Jeffrey
AU - Demirci, Ali
PY - 2009
Y1 - 2009
N2 - Bacterial cellulose (BC) demonstrates unique properties including high mechanical strength, high crystallinity, and high water retention ability, which make it an useful material and has been applied in many industries, such as food, paper manufacturing, and pharmaceutical application. In this study, different additives including agar, carboxymethylcellulose (CMC), microcrystalline cellulose, and sodium alginate were added into fermentation medium in agitated culture to enhance BC production by Acetobacter xylinum. The optimal additive was chosen based on the amount of BC produced. The produced BC were analyzed by using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among the evaluated additives, CMC yielded highest BC production (8.2 g/L) compared to the control (1.3 g/L). The results also indicated that CMC-altered BC production increased with CMC addition and reached saturation around 1%. The variation between replicates for all analysis was less than 5%. From XRD pattern, however, the crystallinity and crystal size decreased as CMC addition increased. FESEM results showed CMC-altered BC produced from agitated culture retained its interweaving property. TGA results demonstrated that CMC-altered BC had about 98% water retention ability, which is higher than BC pellicle produced with static culture. CMC-altered BC also exhibited higher Tmax compared to control. Finally, DMA results showed that BC from agitated culture loses its mechanical strength in both stress at break and Young's modulus when compared to BC pellicle. This study clearly demonstrated that addition of CMC enhanced BC production and slightly changed its structure.
AB - Bacterial cellulose (BC) demonstrates unique properties including high mechanical strength, high crystallinity, and high water retention ability, which make it an useful material and has been applied in many industries, such as food, paper manufacturing, and pharmaceutical application. In this study, different additives including agar, carboxymethylcellulose (CMC), microcrystalline cellulose, and sodium alginate were added into fermentation medium in agitated culture to enhance BC production by Acetobacter xylinum. The optimal additive was chosen based on the amount of BC produced. The produced BC were analyzed by using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among the evaluated additives, CMC yielded highest BC production (8.2 g/L) compared to the control (1.3 g/L). The results also indicated that CMC-altered BC production increased with CMC addition and reached saturation around 1%. The variation between replicates for all analysis was less than 5%. From XRD pattern, however, the crystallinity and crystal size decreased as CMC addition increased. FESEM results showed CMC-altered BC produced from agitated culture retained its interweaving property. TGA results demonstrated that CMC-altered BC had about 98% water retention ability, which is higher than BC pellicle produced with static culture. CMC-altered BC also exhibited higher Tmax compared to control. Finally, DMA results showed that BC from agitated culture loses its mechanical strength in both stress at break and Young's modulus when compared to BC pellicle. This study clearly demonstrated that addition of CMC enhanced BC production and slightly changed its structure.
UR - http://www.scopus.com/inward/record.url?scp=76549117055&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76549117055&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:76549117055
SN - 9781615673629
T3 - American Society of Agricultural and Biological Engineers Annual International Meeting 2009, ASABE 2009
SP - 2003
EP - 2013
BT - American Society of Agricultural and Biological Engineers Annual International Meeting 2009, ASABE 2009
T2 - American Society of Agricultural and Biological Engineers Annual International Meeting 2009
Y2 - 21 June 2009 through 24 June 2009
ER -