Enhanced pullulan production in a biofilm reactor by using response surface methodology

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, response surface methodology using Box-Behnken design was employed to study the effects of sucrose and nitrogen concentrations on pullulan production. Total of 15 experimental runs were carried out in a plastic composite support biofilm reactor. Three-dimensional response surface was generated to evaluate the effects of the factors and to obtain the optimum condition of each factor for maximum pullulan production. After 7-day fermentation with optimum condition, the pullulan production reached 60.7 g/L, which was 1.8 times higher than the result from original medium, and was the highest yield reported to date. The quality analysis demonstrated that the purity of produced pullulan was 95.2% and its viscosity was 2.5 centipoise (cP). Fourier Transform Infrared Spectroscopy (FTIR) also suggested that the produced exopolysaccharide was pullulan. Overall, this study demonstrated that the response surface methodology can be successfully applied to optimize medium composition for pullulan production in a biofilm reactor and maintained its high purity.

Original languageEnglish (US)
Title of host publicationAmerican Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010
PublisherAmerican Society of Agricultural and Biological Engineers
Pages1597-1610
Number of pages14
ISBN (Print)9781617388354
StatePublished - 2010

Publication series

NameAmerican Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010
Volume2

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Enhanced pullulan production in a biofilm reactor by using response surface methodology'. Together they form a unique fingerprint.

Cite this