Enhanced spin-triplet superconductivity near dislocations in Sr 2 RuO 4

Y. A. Ying, N. E. Staley, Y. Xin, K. Sun, X. Cai, D. Fobes, T. J. Liu, Z. Q. Mao, Y. Liu

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Superconductors with a chiral p-wave pairing are of great interest because they could support Majorana modes that could enable the development of topological quantum computing technologies that are robust against decoherence. Sr 2 RuO 4 is widely believed to be a chiral p-wave superconductor. Yet, the mechanism by which superconductivity emerges in this, and indeed most other unconventional superconductors, remains unclear. Here we show that the local superconducting transition temperature in the vicinity of lattice dislocations in Sr 2 RuO 4 can be up to twice that of its bulk. This is all the more surprising for the fact that disorder is known to easily quench superconductivity in this material. With the help of a phenomenological theory that takes into account the crystalline symmetry near a dislocation and the pairing symmetry of Sr 2 RuO 4, we predict that a similar enhancement should emerge as a consequence of symmetry reduction in any superconductor with a two-component order parameter.

Original languageEnglish (US)
Article number2596
JournalNature communications
StatePublished - Nov 8 2013

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Enhanced spin-triplet superconductivity near dislocations in Sr 2 RuO 4'. Together they form a unique fingerprint.

Cite this