Enhancements are blackbox non-trivial: Impossibility of enhanced trapdoor permutations from standard trapdoor permutations

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Trapdoor permutations (TDP) are a fundamental primitive in cryptography. Several variants of this notion have emerged as a result of different applications. However, it is not clear whether these variants can be based on the standard notion of TDPs. We study the question of whether enhanced trapdoor permutations can be based on classical trapdoor permutations. The main motivation of our work is in the context of existing TDP-based constructions of oblivious transfer and non-interactive zero knowledge protocols, which require enhancements to the classical TDP notion. We prove that these enhancements are non-trivial, in the sense that there does not exist fully blackbox constructions of enhanced TDPs from classical TDPs. On the technical side, we show that the enhanced TDP security of any construction in the random TDP oracle world can be broken via a polynomial number of queries to the TDP oracle as well as a weakening oracle, which provides inversion with respect to randomness. We also show that the standard one-wayness of the random TDP oracle stays intact in the presence of this weakening oracle.

Original languageEnglish (US)
Title of host publicationTheory of Cryptography - 16th International Conference, TCC 2018, Proceedings
EditorsAmos Beimel, Stefan Dziembowski
PublisherSpringer Verlag
Pages448-475
Number of pages28
ISBN (Print)9783030038069
DOIs
StatePublished - 2018
Event16th Theory of Cryptography Conference, TCC 2018 - Panaji, India
Duration: Nov 11 2018Nov 14 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11239 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th Theory of Cryptography Conference, TCC 2018
Country/TerritoryIndia
CityPanaji
Period11/11/1811/14/18

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Enhancements are blackbox non-trivial: Impossibility of enhanced trapdoor permutations from standard trapdoor permutations'. Together they form a unique fingerprint.

Cite this