TY - JOUR
T1 - Enhancing adsorption capacity of Egyptian diatomaceous earth by thermo-chemical purification
T2 - Methylene blue uptake
AU - Mohamed, Essam A.
AU - Selim, Ali Q.
AU - Zayed, Ahmed M.
AU - Komarneni, Sridhar
AU - Mobarak, Mohamed
AU - Seliem, Moaaz K.
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2019/1/15
Y1 - 2019/1/15
N2 - In the current study, calcination and thermo-chemical methods were applied in treatment of the processed diatomite fraction (<45 μm), which containing nearly 82.6 wt.% of the raw Egyptian diatomaceous earth. The untreated and modified diatomite fractions were characterized by optical microscopy (OM), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Thermo-chemical purification produced the highest concentration of diatom frustules (>92% SiO2) without blocking impurities and created –Si–O–Si– active sites. These fractions were tested for Methylene blue (MB) adsorption at different pH solutions (2.0–10.0). The purified diatomite via thermo-chemical treatment (PD) gave the greatest adsorption capacity for MB compared to the untreated (UD) and calcinated (CUD) diatomite fractions. Effects of experimental parameters such as MB concentration (60–200 mg L−1), contact time (5–480 min), adsorbent mass (50–250 mg) and temperature (30–55 °C) on MB uptake were investigated. Linear and non-linear forms of Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models indicated that Langmuir model with a maximum adsorption capacity (qmax=105.03mgg-1) fitted well the adsorption data. The chemical nature of MB uptake was revealed by the values of mean free energy E=8.655kJ/moland correlation coefficient of the pseudo-second-order model (R2=0.9997). The calculated thermodynamic parameters (ΔH0, ΔG0 and ΔS0) indicated that the removal of MB is spontaneous and endothermic.
AB - In the current study, calcination and thermo-chemical methods were applied in treatment of the processed diatomite fraction (<45 μm), which containing nearly 82.6 wt.% of the raw Egyptian diatomaceous earth. The untreated and modified diatomite fractions were characterized by optical microscopy (OM), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Thermo-chemical purification produced the highest concentration of diatom frustules (>92% SiO2) without blocking impurities and created –Si–O–Si– active sites. These fractions were tested for Methylene blue (MB) adsorption at different pH solutions (2.0–10.0). The purified diatomite via thermo-chemical treatment (PD) gave the greatest adsorption capacity for MB compared to the untreated (UD) and calcinated (CUD) diatomite fractions. Effects of experimental parameters such as MB concentration (60–200 mg L−1), contact time (5–480 min), adsorbent mass (50–250 mg) and temperature (30–55 °C) on MB uptake were investigated. Linear and non-linear forms of Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models indicated that Langmuir model with a maximum adsorption capacity (qmax=105.03mgg-1) fitted well the adsorption data. The chemical nature of MB uptake was revealed by the values of mean free energy E=8.655kJ/moland correlation coefficient of the pseudo-second-order model (R2=0.9997). The calculated thermodynamic parameters (ΔH0, ΔG0 and ΔS0) indicated that the removal of MB is spontaneous and endothermic.
UR - https://www.scopus.com/pages/publications/85053809269
UR - https://www.scopus.com/inward/citedby.url?scp=85053809269&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2018.09.024
DO - 10.1016/j.jcis.2018.09.024
M3 - Article
C2 - 30245338
AN - SCOPUS:85053809269
SN - 0021-9797
VL - 534
SP - 408
EP - 419
JO - Journal of Colloid And Interface Science
JF - Journal of Colloid And Interface Science
ER -