Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus

Yan Zhang, Lin An, Jie Xu, Bo Zhang, W. Jim Zheng, Ming Hu, Jijun Tang, Feng Yue

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.

Original languageEnglish (US)
Article number750
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus'. Together they form a unique fingerprint.

Cite this