TY - GEN
T1 - Enhancing Quality of Experience for Collaborative Virtual Reality with Commodity Mobile Devices
AU - Chen, Jiangong
AU - Qian, Feng
AU - Li, Bin
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Virtual Reality (VR), together with the network infrastructure, can provide an interactive and immersive experience for multiple users simultaneously and thus enables collaborative VR applications (e.g., VR-based classroom). However, the satisfactory user experience requires not only high-resolution panoramic image rendering but also extremely low latency and seamless user experience. Besides, the competition for limited network resources (e.g., multiple users share the total limited bandwidth) poses a significant challenge to collaborative user experience, in particular under the wireless network with time-varying capacities. While existing works have tackled some of these challenges, a principled design considering all those factors is still missing. In this paper, we formulate a combinatorial optimization problem to maximize the Quality of Experience (QoE), defined as the linear combination of the quality, the average VR content delivery delay, and variance of the quality over a finite time horizon. In particular, we incorporate the influence of imperfect motion prediction when considering the quality of the perceived contents. However, the optimal solution to this problem can not be implemented in real-time since it relies on future decisions. Then, we decompose the optimization problem into a series of combinatorial optimization in each time slot and develop a low-complexity algorithm that can achieve at least 1/2 of the optimal value. Despite this, the trace-based simulation results reveal that our algorithm performs very close to the decomposed optimal offline solution. Furthermore, we implement our proposed algorithm in a practical system with commercial mobile devices and demonstrate its superior performance over state-of-the-art algorithms. We open-source our implementations on https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR.
AB - Virtual Reality (VR), together with the network infrastructure, can provide an interactive and immersive experience for multiple users simultaneously and thus enables collaborative VR applications (e.g., VR-based classroom). However, the satisfactory user experience requires not only high-resolution panoramic image rendering but also extremely low latency and seamless user experience. Besides, the competition for limited network resources (e.g., multiple users share the total limited bandwidth) poses a significant challenge to collaborative user experience, in particular under the wireless network with time-varying capacities. While existing works have tackled some of these challenges, a principled design considering all those factors is still missing. In this paper, we formulate a combinatorial optimization problem to maximize the Quality of Experience (QoE), defined as the linear combination of the quality, the average VR content delivery delay, and variance of the quality over a finite time horizon. In particular, we incorporate the influence of imperfect motion prediction when considering the quality of the perceived contents. However, the optimal solution to this problem can not be implemented in real-time since it relies on future decisions. Then, we decompose the optimization problem into a series of combinatorial optimization in each time slot and develop a low-complexity algorithm that can achieve at least 1/2 of the optimal value. Despite this, the trace-based simulation results reveal that our algorithm performs very close to the decomposed optimal offline solution. Furthermore, we implement our proposed algorithm in a practical system with commercial mobile devices and demonstrate its superior performance over state-of-the-art algorithms. We open-source our implementations on https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR.
UR - http://www.scopus.com/inward/record.url?scp=85140919501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140919501&partnerID=8YFLogxK
U2 - 10.1109/ICDCS54860.2022.00102
DO - 10.1109/ICDCS54860.2022.00102
M3 - Conference contribution
AN - SCOPUS:85140919501
T3 - Proceedings - International Conference on Distributed Computing Systems
SP - 1018
EP - 1028
BT - Proceedings - 2022 IEEE 42nd International Conference on Distributed Computing Systems, ICDCS 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022
Y2 - 10 July 2022 through 13 July 2022
ER -