TY - JOUR
T1 - Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
AU - Łydżba, Patrycja
AU - Rigol, Marcos
AU - Vidmar, Lev
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/3/26
Y1 - 2021/3/26
N2 - In a recent Letter [Phys. Rev. Lett. 125, 180604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.180604], we introduced a closed-form analytic expression for the average bipartite von Neumann entanglement entropy of many-body eigenstates of random quadratic Hamiltonians, namely, of Hamiltonians whose single-particle eigenstates have random coefficients in the position basis. A paradigmatic Hamiltonian for which the expression is valid is the quadratic Sachdev-Ye-Kitaev (SYK2) model in its Dirac fermion formulation. Here we show that the applicability of our result is much broader. Most prominently, it is also relevant for local Hamiltonians such as the three-dimensional (3D) Anderson model at weak disorder. Moreover, it describes the average entanglement entropy in Hamiltonians without particle-number conservation, such as the SYK2 model in the Majorana fermion formulation and the 3D Anderson model with additional terms that break particle-number conservation. We extend our analysis to the average bipartite second Rényi entanglement entropy of eigenstates of the same quadratic Hamiltonians, which is derived analytically and tested numerically. We conjecture that our results for the entanglement entropies of many-body eigenstates apply to quadratic Hamiltonians whose single-particle eigenstates exhibit quantum chaos, which we refer to as quantum-chaotic quadratic Hamiltonians.
AB - In a recent Letter [Phys. Rev. Lett. 125, 180604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.180604], we introduced a closed-form analytic expression for the average bipartite von Neumann entanglement entropy of many-body eigenstates of random quadratic Hamiltonians, namely, of Hamiltonians whose single-particle eigenstates have random coefficients in the position basis. A paradigmatic Hamiltonian for which the expression is valid is the quadratic Sachdev-Ye-Kitaev (SYK2) model in its Dirac fermion formulation. Here we show that the applicability of our result is much broader. Most prominently, it is also relevant for local Hamiltonians such as the three-dimensional (3D) Anderson model at weak disorder. Moreover, it describes the average entanglement entropy in Hamiltonians without particle-number conservation, such as the SYK2 model in the Majorana fermion formulation and the 3D Anderson model with additional terms that break particle-number conservation. We extend our analysis to the average bipartite second Rényi entanglement entropy of eigenstates of the same quadratic Hamiltonians, which is derived analytically and tested numerically. We conjecture that our results for the entanglement entropies of many-body eigenstates apply to quadratic Hamiltonians whose single-particle eigenstates exhibit quantum chaos, which we refer to as quantum-chaotic quadratic Hamiltonians.
UR - http://www.scopus.com/inward/record.url?scp=85103838770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103838770&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.103.104206
DO - 10.1103/PhysRevB.103.104206
M3 - Article
AN - SCOPUS:85103838770
SN - 2469-9950
VL - 103
JO - Physical Review B
JF - Physical Review B
IS - 10
M1 - 104206
ER -