Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation

Piu Saha, Beng San Yeoh, Xia Xiao, Rachel M. Golonka, Sivarajan Kumarasamy, Matam Vijay Kumar

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Iron is essential for many biological functions, including being a cofactor for enzymes involved in cell proliferation. In line, it has been shown that cancer cells can perturb their iron metabolism towards retaining an abundant iron supply for growth and survival. Accordingly, it has been suggested that iron deprivation through the use of iron chelators could attenuate cancer progression. While they have exhibited anti-tumor properties in vitro, the current therapeutic iron chelators are inadequate due to their low efficacy. Therefore, we investigated whether the bacterial catecholate-type siderophore, enterobactin (Ent), could be used as a potent anti-cancer agent given its strong iron chelation property. We demonstrated that iron-free Ent can exert cytotoxic effects specifically towards monocyte-related tumor cell lines (RAW264.7 and J774A.1), but not primary cells, i.e. bone marrow-derived macrophages (BMDMs), through two mechanisms. First, we observed that RAW264.7 and J774A.1 cells preserve a bountiful intracellular labile iron pool (LIP), whose homeostasis can be disrupted by Ent. This may be due, in part, to the lower levels of lipocalin 2 (Lcn2; an Ent-binding protein) in these cell lines, whereas the higher levels of Lcn2 in BMDMs could prevent Ent from hindering their LIP. Secondly, we observed that Ent could dose-dependently impede reactive oxygen species (ROS) generation in the mitochondria. Such disruption in LIP balance and mitochondrial function may in turn promote cancer cell apoptosis. Collectively, our study highlights Ent as an anti-cancer siderophore, which can be exploited as an unique agent for cancer therapy.

Original languageEnglish (US)
Pages (from-to)71-81
Number of pages11
JournalBiochemical Pharmacology
Volume168
DOIs
StatePublished - Oct 2019

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Pharmacology

Fingerprint

Dive into the research topics of 'Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation'. Together they form a unique fingerprint.

Cite this